Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 298
Filtrar
1.
Sci Rep ; 14(1): 8512, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609409

RESUMO

With the development of cloud computing, users are more inclined to outsource complex computing tasks to cloud servers with strong computing capacity, and the cloud returns the final calculation results. However, the cloud is not completely trustworthy, which may leak the data of user and even return incorrect calculations on purpose. Therefore, it is important to verify the results of computing tasks without revealing the privacy of the users. Among all the computing tasks, the polynomial calculation is widely used in information security, linear algebra, signal processing and other fields. Most existing polynomial-based verifiable computation schemes require that the input of the polynomial function must come from a single data source, which means that the data must be signed by a single user. However, the input of the polynomial may come from multiple users in the practical application. In order to solve this problem, the researchers have proposed some schemes for multi-source outsourced data, but these schemes have the common problem of low efficiency. To improve the efficiency, this paper proposes an efficient polynomial-based verifiable computation scheme on multi-source outsourced data. We optimize the polynomials using Horner's method to increase the speed of verification, in which the addition gate and the multiplication gate can be interleaved to represent the polynomial function. In order to adapt to this structure, we design the corresponding homomorphic verification tag, so that the input of the polynomial can come from multiple data sources. We prove the correctness and rationality of the scheme, and carry out numerical analysis and evaluation research to verify the efficiency of the scheme. The experimental indicate that data contributors can sign 1000 new data in merely 2 s, while the verification of a delegated polynomial function with a power of 100 requires only 18 ms. These results confirm that the proposed scheme is better than the existing scheme.

2.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 375-382, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38645842

RESUMO

Objective: Some colorectal cancer patients still face high recurrence rates and poor prognoses even after they have undergone the surgical treatment of radical resection. Identifying potential biochemical markers and therapeutic targets for the prognostic evaluation of patients undergoing radical resection of colorectal cancer is crucial for improving their clinical outcomes. Recently, it has been reported that the T cell immunoglobulin and mucin domain protein 3 (Tim-3) and its ligand galactose lectin 9 (galectin-9) play crucial roles in immune dysfunction caused by various tumors, such as colorectal cancer. However, their expressions, biological functions, and prognostic value in colorectal cancer are still unclear. This study aims to investigate the relationship between Tim-3 and galectin-9 expression levels and the clinicopathological characteristics and prognosis of patients undergoing radical resection of colorectal cancer. Methods: A total of 171 patients who underwent radical resection of colorectal cancer at Chengdu Fifth People's Hospital between February 2018 and March 2019 were selected. Immunohistochemistry was performed to assess the expression levels of Tim-3 and galectin-9 in the cancer tissue samples and the paracancerous tissue samples of the patients. The relationship between Tim-3 and galectin-9 expression levels and the baseline clinical parameters of the patients was analyzed accordingly. Kaplan-Meier analysis was performed to assess the association between Tim-3 and galectin-9 expression levels and the relapse-free survival (RFS) and the overall survival (OS) of colorectal cancer patients. Cox regression analysis was conducted to identify factors associated with adverse prognosis in the patients. Results: The immunohistochemical results showed that the high expression levels of Tim-3 and galectin-9 were observed in 70.18% (120/171) and 32.16% (55/171), respectively, of the colorectal cancer tissues, whereas the low expression levels were 29.82% (51/171) and 67.84% (116/171), respectively. Furthermore, the expression score of Tim-3 was significantly higher in colorectal cancer tissues than that in the paracancerous tissues, while the expression score of galectin-9 was lower than that in the paracancerous tissues (P<0.05). Further analysis revealed that the expression of Tim-3 and galectin-9 was associated with the depth of tumor infiltration, vascular infiltration, and clinical staging (P<0.05). During the follow-up period of 14-63 months, 7 out of 171 patients were lost to follow-up. Among the remaining patients, 49 and 112 cases presented abnormally low expression of Tim-3 and galectin-9, respectively, whereas 115 and 52 cases presented high expression of Tim-3 and galectin-9, respectively. Kaplan-Meier survival analysis demonstrated that patients with high Tim-3 expression in colorectal cancer tissues had significantly lower RFS and OS than those with low expression did (RFS: log-rank=22.66, P<0.001; OS: log-rank=19.71, P<0.001). Conversely, patients with low galectin-9 expression had significantly lower RFS and OS than those with high expression did (RFS: log-rank=19.45, P<0.001; OS: log-rank=22.24, P<0.001). Cox multivariate analysis indicated that TNM stage Ⅲ (HR=2.26, 95% CI: 1.20-5.68), high expression of Tim-3 (HR=0.80, 95% CI: 0.33-0.91), and low expression of galectin-9 (HR=1.80, 95% CI: 1.33-4.70) were independent risk factors affecting RFS and OS in patients (P<0.05). Conclusion: Aberrant expression of Tim-3 and galectin-9 is observed in colorectal cancer tissues. High expression of Tim-3 and low expression of galectin-9 are closely associated with adverse clinico-pathological characteristics and prognosis. They are identified as independent influencing factors that may trigger adverse prognostic events in patients. These findings suggest that Tim-3 and galectin-9 have potential as new therapeutic targets and clinical indicators.

3.
Nutrients ; 16(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474792

RESUMO

Colostrum basic protein (CBP) is a trace protein extracted from bovine colostrum. Previous studies have shown that CBP can promote bone cell differentiation and increase bone density. However, the mechanism by which CBP promotes bone activity remains unclear. This study investigated the mechanism of the effect of CBP on bone growth in mice following dietary supplementation of CBP at doses that included 0.015%, 0.15%, 1.5%, and 5%. Compared with mice fed a normal diet, feeding 5% CBP significantly enhanced bone rigidity and improved the microstructure of bone trabeculae. Five-percent CBP intake triggered significant positive regulation of calcium metabolism in the direction of bone calcium accumulation. The expression levels of paracellular calcium transport proteins CLDN2 and CLDN12 were upregulated nearly 1.5-fold by 5% CBP. We conclude that CBP promotes calcium absorption in mice by upregulating the expression of the calcium-transporting paracellular proteins CLND2 and CLND12, thereby increasing bone density and promoting bone growth. Overall, CBP contributes to bone growth by affecting calcium metabolism.


Assuntos
Cálcio , Colostro , Gravidez , Feminino , Animais , Camundongos , Bovinos , Cálcio/metabolismo , Colostro/metabolismo , Cálcio da Dieta/metabolismo , Osso e Ossos/metabolismo , Desenvolvimento Ósseo , Densidade Óssea , Proteínas na Dieta/farmacologia
4.
Stem Cell Rev Rep ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472643

RESUMO

The regenerative function of stem cells is compromised when the proportion of senescent stem cells increases with ageing advance. Therefore, combating stem cell senescence is of great importance for stem cell-based tissue engineering in the elderly, but remains largely unexplored. Osteopontin (OPN), a glycosylated phosphoprotein, is one of the key extracellular matrix molecules in bone tissue. OPN activates various signalling pathways and modulates cellular activities, including cell senescence. However, the role of OPN in stem cell senescence remains largely unknown. This study aims to investigate if OPN modulates cell senescence and bone regenerative function in human adipose-derived mesenchymal stem cells (ASCs), and to determine the underlying mechanisms. We first developed a senescent ASC model using serial passaging until passage 10 (P10), in which senescent cells were characterised by reduced proliferation and osteogenic differentiation capacity compared to P4 ASCs. The conditioned medium from P10 ASCs exhibited a diminished trophic effect on human osteoblasts (HOBs), compared to that from P4 ASCs. P10 ASCs on OPN-coated surface showed rejuvenated phenotype and enhanced osteogenic differentiation. The conditioned medium from P10 ASCs on OPN-coating improved trophic effects on HOBs. OPN regulated the morphology of senescent ASCs, transforming them from a more rounded and flattened cell shape to an elongated shape with a smaller area. These findings demonstrated the effects of OPN in restoring senescent ASCs functions, possibly through a mechanism that involves the modulation of cell morphology, indicating that OPN might hold a great potential for rejuvenating senescent stem cells and could potentially open a new venue for regenerating bone tissue in age-related diseases.

5.
BMC Genomics ; 25(1): 227, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429743

RESUMO

BACKGROUND: Hybridization capture-based targeted next generation sequencing (NGS) is gaining importance in routine cancer clinical practice. DNA library preparation is a fundamental step to produce high-quality sequencing data. Numerous unexpected, low variant allele frequency calls were observed in libraries using sonication fragmentation and enzymatic fragmentation. In this study, we investigated the characteristics of the artifact reads induced by sonication and enzymatic fragmentation. We also developed a bioinformatic algorithm to filter these sequencing errors. RESULTS: We used pairwise comparisons of somatic single nucleotide variants (SNVs) and insertions and deletions (indels) of the same tumor DNA samples prepared using both ultrasonic and enzymatic fragmentation protocols. Our analysis revealed that the number of artifact variants was significantly greater in the samples generated using enzymatic fragmentation than using sonication. Most of the artifacts derived from the sonication-treated libraries were chimeric artifact reads containing both cis- and trans-inverted repeat sequences of the genomic DNA. In contrast, chimeric artifact reads of endonuclease-treated libraries contained palindromic sequences with mismatched bases. Based on these distinctive features, we proposed a mechanistic hypothesis model, PDSM (pairing of partial single strands derived from a similar molecule), by which these sequencing errors derive from ultrasonication and enzymatic fragmentation library preparation. We developed a bioinformatic algorithm to generate a custom mutation "blacklist" in the BED region to reduce errors in downstream analyses. CONCLUSIONS: We first proposed a mechanistic hypothesis model (PDSM) of sequencing errors caused by specific structures of inverted repeat sequences and palindromic sequences in the natural genome. This new hypothesis predicts the existence of chimeric reads that could not be explained by previous models, and provides a new direction for further improving NGS analysis accuracy. A bioinformatic algorithm, ArtifactsFinder, was developed and used to reduce the sequencing errors in libraries produced using sonication and enzymatic fragmentation.


Assuntos
Artefatos , Genoma Humano , Humanos , Biblioteca Gênica , Análise de Sequência de DNA/métodos , DNA de Neoplasias , Sequenciamento de Nucleotídeos em Larga Escala/métodos
6.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542450

RESUMO

Lung aging triggers the onset of various chronic lung diseases, with alveolar repair being a key focus for alleviating pulmonary conditions. The regeneration of epithelial structures, particularly the differentiation from type II alveolar epithelial (AT2) cells to type I alveolar epithelial (AT1) cells, serves as a prominent indicator of alveolar repair. Nonetheless, the precise role of aging in impeding alveolar regeneration and its underlying mechanism remain to be fully elucidated. Our study employed histological methods to examine lung aging effects on structural integrity and pathology. Lung aging led to alveolar collapse, disrupted epithelial structures, and inflammation. Additionally, a relative quantification analysis revealed age-related decline in AT1 and AT2 cells, along with reduced proliferation and differentiation capacities of AT2 cells. To elucidate the mechanisms underlying AT2 cell functional decline, we employed transcriptomic techniques and revealed a correlation between inflammatory factors and genes regulating proliferation and differentiation. Furthermore, a D-galactose-induced senescence model in A549 cells corroborated our omics experiments and confirmed inflammation-induced cell cycle arrest and a >30% reduction in proliferation/differentiation. Physiological aging-induced chronic inflammation impairs AT2 cell functions, hindering tissue repair and promoting lung disease progression. This study offers novel insights into chronic inflammation's impact on stem cell-mediated alveolar regeneration.


Assuntos
Células Epiteliais Alveolares , Pulmão , Humanos , Células Epiteliais Alveolares/metabolismo , Células Cultivadas , Pulmão/metabolismo , Diferenciação Celular/fisiologia , Inflamação/metabolismo
7.
J Biomed Inform ; 152: 104625, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479675

RESUMO

Cross-sample contamination is one of the major issues in next-generation sequencing (NGS)-based molecular assays. This type of contamination, even at very low levels, can significantly impact the results of an analysis, especially in the detection of somatic alterations in tumor samples. Several contamination identification tools have been developed and implemented as a crucial quality-control step in the routine NGS bioinformatic pipeline. However, no study has been published to comprehensively and systematically investigate, evaluate, and compare these computational methods in the cancer NGS analysis. In this study, we comprehensively investigated nine state-of-the-art computational methods for detecting cross-sample contamination. To explore their application in cancer NGS analysis, we further compared the performance of five representative tools by qualitative and quantitative analyses using in silico and simulated experimental NGS data. The results showed that Conpair achieved the best performance for identifying contamination and predicting the level of contamination in solid tumors NGS analysis. Moreover, based on Conpair, we developed a Python script, Contamination Source Predictor (ConSPr), to identify the source of contamination. We anticipate that this comprehensive survey and the proposed tool for predicting the source of contamination will assist researchers in selecting appropriate cross-contamination detection tools in cancer NGS analysis and inspire the development of computational methods for detecting sample cross-contamination and identifying its source in the future.


Assuntos
Biologia Computacional , Neoplasias , Humanos , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias/diagnóstico , Neoplasias/genética , Controle de Qualidade
8.
Environ Res ; 249: 118417, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38316385

RESUMO

The impact of drought on terrestrial ecosystems is increasing, and the spatiotemporal heterogeneity of drought changes exacerbates the difficulty of determining ecosystem responses, especially in arid regions far from oceans. Tree rings have been widely used to understand how forest ecosystems respond to drought. However, the link between local hydroclimate variations related to tree rings and large-scale climate changes is not clear in the Qilian Mountains. Here, we used the tree ring width index to analyze the trend of Picea crassifolia growth and its relationship with climate in the middle Qilian Mountains. The results showed that the radial growth trend of Picea crassifolia is synchronized in the middle Qilian Mountains by calculating the Gleichläufigkeit index (GLK). Our analyses indicated that tree radial growth is positively correlated with drought during the growing season. Tree growth responds stably to drought (scPDSI and SPEI) and precipitation but unstably to temperature during 1950-2019. We further traced the meteorological factors that cause regional drought changes associated with radial growth. An increased total precipitation and decreased evaporation contribute to drought alleviation, favoring an increased tree radial growth. The increased total precipitation is mainly due to increased large-scale precipitation, which is related to water vapor transport changes. This study attempts to explore the influence of large-scale meteorology on regional drought change and its related tree radial growth response, which helps us to better understand the changes in forest ecosystems under climate change.

9.
Stroke Vasc Neurol ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302191

RESUMO

BACKGROUND AND PURPOSE: Tenecteplase (TNK) has demonstrated non-inferiority to alteplase in patients who had an acute ischaemic stroke presenting within 4.5 hours from symptom onset. The trial is aimed to explore the efficacy and safety of TNK in Chinese patients who had an acute ischaemic stroke with large/medium vessel occlusion in an extended time window. METHODS AND DESIGN: Chinese Acute Tissue-Based Imaging Selection for Lysis In Stroke Tenecteplase II (CHABLIS-T II) is a multicentre, prospective, block-randomised, open-label, blinded-endpoint, phase IIb study. Eligible patients are 1:1 randomised into two groups: 0.25 mg/kg TNK versus best medical management (excluding TNK). The safety and efficacy of 0.25 mg/kg TNK are assessed through reperfusion status and presence of symptomatic intracranial haemorrhage (sICH). STUDY OUTCOMES: The primary outcome is major reperfusion without sICH at 24-48 hours after randomisation. Major reperfusion is defined as restoration of blood flow to greater than 50% of the involved ischaemic territory assessed by catheter angiography or repeated perfusion imaging. Secondary outcomes include post-thrombolytic recanalisation, neurological improvements, change in the National Institutes of Health Stroke Scale score, haemorrhagic transformation at 24-48 hours, systematic bleeding at discharge, modified Rankin Scale (mRS) 0-1, mRS 0-2, mRS 5-6, mRS distribution and Barthel index at 90 days. DISCUSSION: CHABLIS-T II will provide important evidence of intravenous thrombolysis with TNK for patients who had an acute stroke in an extended time window.

10.
Foods ; 13(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38254535

RESUMO

Food safety is closely related to human health. However, the regulation and testing processes for food safety are intricate and resource-intensive. Therefore, it is necessary to address food safety risks using a combination of deep learning, the Internet of Things, smartphones, quick response codes, smart packaging, and other smart technologies. Intelligent designs that combine digital systems and advanced functionalities with biosensors hold great promise for revolutionizing current food safety practices. This review introduces the concept of Food Safety 4.0, and discusses the impact of intelligent biosensors, which offer attractive smarter solutions, including real-time monitoring, predictive analytics, enhanced traceability, and consumer empowerment, helping improve risk management and ensure the highest standards of food safety.

11.
Int J Nanomedicine ; 19: 91-107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38192634

RESUMO

Background: Although systemic chemotherapy is a standard approach for osteosarcoma (OS) treatment, its efficacy is limited by the inherent or acquired resistance to apoptosis of tumor cells. Ferroptosis is considered as an effective strategy capable of stimulating alternative pathways of cancer cell demise. The purpose of this study is to develop a novel strategy boosting ferroptotic cascade for synergistic cancer therapy. Methods and Results: A novel nanovehicle composed of arginine-glycine-aspartate (RGD) modified mesoporous silica-coated iron oxide loading Fin56 was rationally prepared (FSR-Fin56). With the RGD-mediated targeting affinity, FSR-Fin56 could achieve selective accumulation and accurate delivery of cargos into cancer cells. Upon exposure to NIR light, the nanovehicle could generate localized hyperthermia and disintegrate to liberate the therapeutic payload. The released Fin56 triggered the degradation of GPX4, while Fe3+ depleted the intracellular GSH pool, producing Fe2+ as a Fenton agent. The local rise in temperature, in conjunction with Fe2+-mediated Fenton reaction, led to a rapid and significant accumulation of ROS, culminating in LPOs and ferroptotic death. The outstanding therapeutic efficacy and safety of the nanovehicle were validated both in vitro and in vivo. Conclusion: The Fin56-loaded FSR nanovehicle could effectively disturb the redox balance in cancer cells. Coupled with NIR laser irradiation, the cooperative CDT and PTT achieved a boosted ferroptosis-inducing therapy. Taken together, this study offers a compelling strategy for cancer treatment, particularly for ferroptosis-sensitive tumors like osteosarcoma.


Assuntos
Neoplasias Ósseas , Ferroptose , Hipertermia Induzida , Osteossarcoma , Humanos , Ferro , Osteossarcoma/tratamento farmacológico , Neoplasias Ósseas/tratamento farmacológico , Oligopeptídeos
12.
Eur Stroke J ; : 23969873231224573, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291622

RESUMO

INTRODUCTIONS: Venous outflow (VO) is emerging as a marker of microvascular integrity in acute ischemic stroke. Using hemorrhagic transformation (HT) and infarct growth as mediators, we tested whether a favorable VO profile benefited functional outcome by reducing consequences of microvascular dysfunction. PATIENTS AND METHODS: Patients receiving thrombectomy in three comprehensive stroke centers due to acute anterior circulation occlusion were included. VO was assessed semi-quantitatively by the opacification of ipsilateral vein of Labbé, Trolard and superficial middle cerebral vein. HT was graded on follow-up CT. Infarct growth volume (IGV) was the difference of final infarct volume and baseline core volume. The association of VO and functional independence (90-day modified Rankin Scale ⩽ 2) was examined by logistic regression. Mediation analysis was performed among VO, HT or IGV, and functional outcome in patients with or without recanalization, respectively. RESULTS: In 242 patients analyzed, VO was strongly correlated with functional independence and VO ⩾ 4 was defined favorable. In 175 patients recanalized, favorable VO was associated with a reduced risk of HT (OR = 0.82, 95% CI 0.71-0.95, p = 0.008), which accounted for 13.1% of the association between VO and favorable outcome. In 67 patients without recanalization, favorable VO was associated with decreased IGV (ß = -0.07, 95% CI -0.11 to -0.02, p = 0.007). The association of favorable VO and functional independence was no longer significant (aOR = 4.84, 95% CI 0.87-38.87, p = 0.089) after including IGV in the model, suggesting a complete mediation. DISCUSSION AND CONCLUSION: In patients with acute anterior large vessel occlusion, the clinical benefit of VO may be mediated through reduced microvascular dysfunction.

13.
Trauma Violence Abuse ; 25(2): 1551-1567, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37626470

RESUMO

Prevention services can promote public health by building protective factors and reducing maltreatment risk. Yet, engaging caregivers in prevention services presents a unique set of challenges. Measurement studies are important first steps to increase the knowledge of caregiver engagement in prevention services. The purpose of this scoping review was to investigate how family engagement has been measured and operationalized in the studies of maltreatment prevention/positive parenting programs. The review examined quantitative and mixed methods studies conducted in the U.S., which measured multiple dimensions of client engagement, including behavioral, attitudinal, and relational domains. A total of 88 studies selected from PubMed, CINAHL, ERIC, PsycINFO, Social Work Abstracts, Academic Search Premier, and Web of Science were included in this review. Results indicated that studies examine engagement constructs in all three domains of engagement with a primary focus on behavioral engagement. The attitudinal and relational engagement was mostly assessed through general satisfaction surveys, and a limited number of studies utilized validated measures to assess those constructs. While most studies reported acceptable internal reliabilities, only two studies reported other dimensions of psychometric qualities. Only one validated measure was found, which assessed client perceptions of provider cultural competence. More measurement studies are needed to further incorporate multiple dimensions of engagement into the studies of maltreatment prevention programs, which can inform the effort to develop tailored implementation strategies to fully engage various groups of parents in maltreatment prevention programs.


Assuntos
Maus-Tratos Infantis , Criança , Humanos , Maus-Tratos Infantis/prevenção & controle , Pais , Poder Familiar , Cuidadores , Fatores de Risco
14.
Adv Healthc Mater ; 13(1): e2301726, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670419

RESUMO

Core-shell structured nanocarriers have come into the scientific spotlight in recent years due to their intriguing properties and wide applications in materials chemistry, biology, and biomedicine. Tailored core-shell structures to achieve desired performance have emerged as a research frontier in the development of smart drug delivery system. However, systematic reviews on the design and loading/release mechanisms of stimulus-responsive core-shell structured nanocarriers are uncommon. This review starts with the categories of core-shell structured nanocarriers with different means of drug payload, and then highlights the controlled release mechanism realized through stimulus-response processes triggered under different environments. Finally, some multifaceted perspectives on the design of core-shell structured materials as drug carriers are addressed. This work aims to provide new enlightenments and prospects in the drug delivery field for further developing advanced and smart nanocarriers.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Portadores de Fármacos/química , Nanopartículas/química
15.
Am Heart J ; 269: 139-148, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38151142

RESUMO

BACKGROUND: Left ventricular (LV) systolic dysfunction worsens outcomes in patients undergoing percutaneous coronary intervention (PCI). The objective of this study, therefore, was to evaluate outcomes of pLVAD-supported high-risk PCI (HRPCI) patients according to LV ejection fraction (LVEF). METHODS: Patients from the PROTECT III study undergoing pLVAD-supported HRPCI were stratified according to baseline LVEF: severe LV dysfunction (LVEF <30%), mild and moderate LV dysfunction (LVEF ≥30% to <50%), or preserved LV function (LVEF ≥50%). Major adverse cardiovascular and cerebrovascular events (MACCE: composite of all-cause death, myocardial infarction, stroke/transient ischemic attack, and repeat revascularization), and PCI-related complications were assessed at 90 days and mortality was assessed at 1-year. RESULTS: From March 2017 to March 2020, 940 patients had evaluable baseline LVEF recorded in the study database. Patients with preserved LV function were older, more frequently presented with myocardial infarction, and underwent more left main PCI and atherectomy. Immediate PCI-related coronary complications were infrequent (2.7%, overall), similar between groups (P = 0.98), and not associated with LVEF. Unadjusted 90-day MACCE rates were similar among LVEF groups; however, as a continuous variable, LVEF was associated with both 90-day MACCE (adj.HR per 5% 0.89, 95% CI [0.80, 0.98], P = 0.018) and 1-year mortality (adj.HR per 5% 0.84 [0.78, 0.90], P <0.0001). CONCLUSIONS: Patients who underwent pLVAD-supported HRPCI exhibited low incidence of PCI-related complications, regardless of baseline LVEF. However, LVEF was associated with 90-day MACCE and 1-year mortality.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Intervenção Coronária Percutânea , Disfunção Ventricular Esquerda , Humanos , Volume Sistólico , Função Ventricular Esquerda , Resultado do Tratamento , Infarto do Miocárdio/complicações , Doença da Artéria Coronariana/complicações
16.
J Interferon Cytokine Res ; 44(2): 68-79, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38153396

RESUMO

Macrophages are crucial immune cells that play essential roles in the healing of myocardial infarction (MI), undergoing continuous polarization throughout this process. C-C motif chemokine 2 (CCL2) is a chemokine that regulates inflammatory responses during MI. However, the extent to which CCL2 influences macrophage polarization and MI healing remains incompletely understood. In this study, we investigate the role of CCL2 in macrophage polarization and MI healing. Our findings reveal that CCL2 is differentially expressed in lipopolysaccharide (LPS)-induced M1 and interleukin (IL)-4-induced M2 RAW264.7 macrophages. Knockdown of CCL2 attenuates TNF-α secretion stimulated by LPS, while overexpression of CCL2 mitigates IL-10 production triggered by IL-4 in these macrophages. Moreover, CCL2 deficiency disrupts LPS-induced M1 polarization, whereas CCL2 overexpression reduces M2 polarization of RAW264.7 macrophages induced by IL-4. Further exploration indicates that the promotion of M1 polarization by CCL2 is significantly impaired by inhibition of the p38-mediated MAPK pathway and NF-κB pathway. In a MI mouse model, CCL2 knockdown remarkably reduces infarct size, collagen synthesis, and the expression of cardiac fibrosis and hypertrophy markers. The activity of the p38-mediated MAPK pathway and NF-κB pathway is downregulated by CCL2 knockdown as well. Additionally, the number of total macrophages and M1 macrophages in the infarct decreases, while the number of M2 macrophages increases upon CCL2 deficiency. In conclusion, these results suggest that CCL2 is a key regulator of macrophage polarization, controlling MI healing in vivo.


Assuntos
Interleucina-4 , Infarto do Miocárdio , Animais , Camundongos , Interleucina-4/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , NF-kappa B/metabolismo
17.
Tissue Cell ; 86: 102284, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134573

RESUMO

Because adenomyosis (AM) ectopic primary cells are hard to come by, have a short lifespan, and the characteristics that alter over time, their utility in AM research is constrained. This study aimed to establish a line of immortalized human adenomyosis ectopic cell (ihAMEC) to change this situation. Primary cells were obtained from AM ectopic lesion tissue and then infected with Simian Vacuolating Virus 40 Tag (SV40 T) lentivirus and screened to establish immortalized cells. We verified the main features and found that the ihAMEC could be cultured for more than 50 generations and the proliferation ability of ihAMEC was more active than that of primary cells. The cytoskeleton and cell types of ihAMEC were similar to primary cells and maintained a normal karyotype. The expression of epithelial-mesenchymal transition (EMT) markers, estrogen-metabolizing proteins, and estrogen/progesterone receptors in ihAMEC was similar to the expression seen in primary cells. In addition, the response of ihAMEC under estrogen treatment and Lipopolysaccharide intervention is similar to primary cells. The clonogenic ability of ihAMEC was lower than tumor cells and did not form tumors in tumorigenicity assays. Thus, ihAMEC can be used as in vitro cellular model for pathogenesis and drug development studies regarding AM.


Assuntos
Adenomiose , Feminino , Humanos , Endométrio/patologia , Linhagem Celular , Transição Epitelial-Mesenquimal , Estrogênios , Proliferação de Células
18.
Front Oncol ; 13: 1274439, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152367

RESUMO

Purpose: TOPBP1 interacting checkpoint and replication regulator (TICRR), a hub gene of the Cdk2-mediated initiation step of DNA replication, has been shown an essential role in tumorigenesis by accelerating the DNA replication of tumor cells. Methods: RT-qPCR was used to detect the mRNA expression of TICRR in LUAD tumors and adjacent normal tissues. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database of LUAD were acquired to analyze the critical role of TICRR expression in survival prognosis and clinicopathology characters in LUAD. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) were performed using the R package. The correlation of TICRR expression with immune cell infiltration, RNA epigenetic modification, DNA damage repair (DDR) pathway, and cell metabolism of LUAD was further explored to verify significant conclusions. Results: TICRR was significantly upregulated in most cancer types, including LUAD, lung squamous cell carcinoma (LUSC), and others. Cox regression analysis indicated the overexpression of TICRR was associated with poor survival in several cancers. In LUAD, TICRR expression was positively correlated with tumor stage and was increased in smoking, male, and high tumor mutational burden (TMB) patients. Enrichment analysis revealed that TICRR could influence tumor proliferation and prognosis via activating pathways involving cell cycle, DNA repair, DNA replication, cysteine metabolism, oxidative phosphorylation, and ubiquitin-mediated proteolysis pathways. Interestingly, high TICRR expression correlated with DDR pathway signature (34 genes), 37 m6A/m5C regulated genes, and some metabolism-regulated genes. Silencing the TICRR gene affects cysteine metabolism and modifies cancer-related pathways, with decreased cell cycle and increased B/T cell receptor signaling. Our TICRR risk model accurately predicts LUAD patient prognosis, validated across GEO datasets, and is integrated with clinical characteristics via a nomogram, facilitating personalized treatment strategies and enhancing patient management. Conclusions: Taken together, TICRR has emerged as a promising prognostic biomarker in lung adenocarcinoma (LUAD), with implications in immune activation, cell cycle regulation, RNA modification, and tumor energy metabolism. These findings suggest that TICRR could serve as a viable therapeutic target and a reliable prognostic indicator for LUAD.

19.
Nature ; 623(7989): 942-948, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37968401

RESUMO

Magic-angle twisted trilayer graphene (MATTG) exhibits a range of strongly correlated electronic phases that spontaneously break its underlying symmetries1,2. Here we investigate the correlated phases of MATTG using scanning tunnelling microscopy and identify marked signatures of interaction-driven spatial symmetry breaking. In low-strain samples, over a filling range of about two to three electrons or holes per moiré unit cell, we observe atomic-scale reconstruction of the graphene lattice that accompanies a correlated gap in the tunnelling spectrum. This short-scale restructuring appears as a Kekulé supercell-implying spontaneous inter-valley coherence between electrons-and persists in a wide range of magnetic fields and temperatures that coincide with the development of the gap. Large-scale maps covering several moiré unit cells further reveal a slow evolution of the Kekulé pattern, indicating that atomic-scale reconstruction coexists with translation symmetry breaking at a much longer moiré scale. We use auto-correlation and Fourier analyses to extract the intrinsic periodicity of these phases and find that they are consistent with the theoretically proposed incommensurate Kekulé spiral order3,4. Moreover, we find that the wavelength characterizing moiré-scale modulations monotonically decreases with hole doping away from half-filling of the bands and depends weakly on the magnetic field. Our results provide essential insights into the nature of the correlated phases of MATTG in the presence of strain and indicate that superconductivity can emerge from an inter-valley coherent parent state.

20.
Water Sci Technol ; 88(9): 2271-2283, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37966182

RESUMO

It was necessary to research an efficient treatment process suitable for township domestic wastewater. In this paper, the performance of the cyclic activated sludge system (CASS) system for simultaneous carbon (C), nitrogen (N) and phosphorus (P) removal was investigated by changing the operation cycle of the CASS reactor. Four operating conditions were set up, T1, T2, T3 and T4, with cycle times of 6, 8, 12 and 8 h (with carbon source), respectively. The results showed that the CASS system had good simultaneous removal of C, N and P. The highest removal rates of COD, TN, NH4+ -N and TP were 87.69, 72.99, 98.60 and 98.38%, respectively, at a cycle time of 8 h. The TN removal rate could be increased to 82.51% after the addition of carbon source. Microbial community analysis showed that Proteobacteria, Bacteroidetes and Candidatus Saccharibacteria were the main phylum-level bacteria. Their presence facilitated the effectiveness of the CASS process for nitrogen removal and phosphorus removal. Functional analysis of genes revealed that the abundance values of genes associated with C, N and P metabolism were higher when the treatment was effective.


Assuntos
Esgotos , Águas Residuárias , Eliminação de Resíduos Líquidos , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Carbono/metabolismo , Desnitrificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...